BLUE VALLEY DISTRICT CURRICULUM & INSTRUCTION # Engineering ## Introduction to Engineering Design ### **ORGANIZING THEME/TOPIC** #### **FOCUS STANDARDS & SKILLS** | Unit 1: Design Process | Implement the design process used by professional engineers to create innovative solutions. | |--|--| | Design Process Brainstorming Prototype testing and Scientific method Principles and Elements of Design Portfolio Development | KS 21006.02.01 Explain the steps of the design process. KS 21006.02.02 Assess the value of working as a team and benefits of collaboration. KS 21006.02.03 Investigate the principles and elements of design and demonstrate their use in the design process. KS 21006.02.04 Identify career opportunities in design engineering and their job functions. | | Time Frame: 3 weeks | KS 21006.02.05 Express understanding of the principles and elements of design utilized in products, print media, and art forms. KS 21006.03.04 Develop a portfolio to organize and display evidence of their work. KS 21006.06.01 Apply the creative thinking process | | Unit 2: Sketching and Visualization | Create various technical representations used in visualization, communicating and | | Techniques | documenting design ideas. | | PictorialAnnotated Sketches | KS 21006.04.01 Integrate proper sketching techniques and styles in the creation of sketches. | | - Trinicialed Choloride | KS 21006.04.02 Demonstrate the ability to produce two-dimensional geometric figures. KS 21006.04.04 Formulate pictorial sketches to develop ideas, solve problems, and understand relationships during the design process. | | | KS 21006.04.06 Select a sketching method that is efficient in its use of color, form, and
symbols representing abstract data. | | | KS 21006.04.08 Evaluate and select the necessary views to graphically communicate design solutions. | | | KS 21006.04.10 Integrate annotated sketches in presentations, portfolio, and documentation processes. | | Time Frame: 2 weeks | KS 21006.04.11 Develop properly annotated sketches to accurately convey data in design solution. | | Unit 3: Measurement and Statistics: US Customary units Metric units Unit Conversion Precision and accuracy Linear dimensions Statistical analysis with spreadsheets Statistics and quality Time Frame: 3 weeks | Utilize precise measurement and accurate statistical analysis in the application of the design process. KS 21006.02.01 Apply the steps of the design process. Construct a testable prototype of a problem solution. Analyze the performance of a design during testing and judge the solution as viable or non-viable with respect to meeting the design requirements. Use statistics to quantify information, support design decisions and justify problem solutions. Use a spreadsheet problem to store and manipulate raw date and perform calculations using formulas. KS 21006.08.15 Set up and integrate the use of a customized common dimensioning standard. KS 21004.13.02 Design and create tables, charts, and graphs to illustrate data collected. | |---|---| | Unit 4: Modeling Skills Conceptual models Graphical models 3D Computer Models Physical models Mathematical models Time Frame: 4 weeks | Apply a variety of modeling methods and formats to represent systems, components, and processes. KS 21006.06.04 Communicate their idea through written and verbal formats. KS 21006.06.06 Select and utilize the appropriate graphical format to a problem. KS 21006.06.07 Analyze and develop graphical representation of given data. KS 21006.06.08 Demonstrate an understanding of the different physical modeling techniques. KS 21006.06.09 Present a model with its correct proportions. KS 21006.06.11 Evaluate a problem using mathematical formulas. KS 21006.06.12 Analyze a solution to a problem using the correct format of analysis. KS 21006.06.13 Interpret a sketch using a CAD package. KS 21006.06.14 Explain the difference between parametric and adaptive designs and be able to specify their uses. KS 21006.06.15 Draw a two-dimensional sketch using CAD package. KS 21006.06.17 Demonstrate the ability to generate a three-dimensional model. KS 21006.06.18 Demonstrate the use of work features and how they are applied while constructing a solid model. KS 21006.06.19 Recognize the use and need of work planes, axes, and points in the development of a computer model. | | Time Frame: 4 weeks | development of a computer model. | | Unit 5: Geometry of Design | Apply 2 and 3-dimenstional geometric concepts and skills to problem solving and engineering design. | |---|--| | Forms and Shapes | doorgin. | | Geometric Constraints | KS 21006.05.01 Define and contrast points, lines and line segments. | | Cartesian Coordinate System | KS 21006.05.02 Identify major geometric shapes. | | Parametric Design | KS 21006.05.03 Using a compass, ruler and triangle, construct geometric shapes. | | r arametric Design | KS 21006.05.04 Define terminology associated with arcs and circles. | | | KS 21006.05.06 Distinguish and define geometric constraints. | | | KS 21006.05.07 Identify geometric constraints in given three dimensional models. | | | 1/2 04000 0F 00 A 1 H 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | | | KS 21006.05.08 Apply the right hand rule to identify the X, Y, and Z axes of the Cartesian Coordinate System. | | | KS 21006.05.09 Apply a combination of absolute, relative, and polar coordinates to | | Time Frame: 3 weeks | construct a three-dimensional model. | | Time Frame. 6 weeks | KS 21006.05.10 Define the origin planes in the Coordinate System. | | | KS 21006.06.16 Apply geometrical and dimensional constraints to a sketch. | | Unit 6 Reverse Engineering | Disassemble and analyze a product or system in order to understand and document the visual, functional, and/or structural aspects of its design. | | Visual, functional and structural aspects of design | | | Functional analysis | KS 21006.08.01 Students will demonstrate how to extract data from solid models. | | Strengths and weaknesses of product and manufacturing | Evaluate and compare the impact of materials and fastener choices on product | | process | design cost, performance, marketability, environment and service life. | | | Accurately measure linear distances and mass. | | T | Create sketches and orthographic projections of an object to fully detail parts. | | Time Frame: 3 weeks | Generate CAD multi-view technical drawings, including orthographic projections, | | | sections view(s), detail view(s), auxiliary view(s) and pictorial views. | | Unit 7 Documentation | Create engineering working drawings that document measurements collected during reverse | | | engineering process and to propose new designs. | | Working Drawings | 160 04000 00 00 5 1 1 4 1 1 | | Dimensioning | KS 21006.08.02 Evaluate the accuracy of mass properties calculations. | | Annotation Dimensional telepropage | KS 21006.08.03 Describe how analysis data can be used to update parametric models. | | Dimensional tolerances3D Computer models | KS 21006.08.04 Generate an isometric view from orthographic drawing views. | | • 3D Computer models | KS 21006.08.05 Determine the correct application for the various section views. | | | KS 21006.08.07 Create the appropriate section view for a specified view. | | | KS 21006.08.08 Create a detail view that corresponds to appropriate orthographic view. | | | KS 21006.08.09 Create an auxiliary view to show the detail on an inclined surface. | | | KS 21006.08.11 Apply common dimensioning systems, rules and practices. | | | KS 21006.08.13 Apply size and location dimensions to annotated drawings. | | | KS 21006.08.17 Solve tolerance problems. | | Time Frame: 5 weeks | KS 21006.08.19 Formulate general and proprietary specifications to further | | | communicate information relating to product design. | | | | | Unit 8: Advanced Computer Modeling Adding Components Assembly Constraints Part Libraries Sub-Assemblies Driving Constraints Adaptive Design Mass Properties Mathematical functions | Utilize 3D computer modeling skills to create exploded and animated assembly views of multi-part products. KS 21006.07.01 Demonstrate assembly modeling skills to solve design problems. KS 21006.07.03 Create components effectively in the assembly modeling environment. KS 21006.07.05 Replace components with modified external parts. KS 21006.07.06 Perform part manipulation during the creation of an assembly model. KS 21006.07.07 Demonstrate assembly modeling skills to solve design problems. KS 21006.07.09 Apply assembly constraints to successfully construct a multi-part object. KS 21006.07.10 Utilize part libraries effectively during the assembly modeling process. KS 21006.07.12 Employ sub-assemblies during the production of assemblies. KS 21006.07.14 Apply drive constraints to simulate the motion of parts in assemblies. | |--|--| | Time Frame: 3 weeks | KS 21006.07.14 Apply drive constraints to simulate the motion of parts in assembles. KS 21006.07.16 Apply adaptive design concepts during development of sketches, features, parts and assemblies. | | Unit 9: Design Team and Design Challenge Collaborative teamwork Virtual communication Shared decision-making Ethical responsibilities Diversity and cultural competence. Societal and environmental impacts Engineering design process Scientific method Mathematical models Time Frame: 9 weeks | Apply the concepts and skills of engineering to create and test a solution for a real-world problem. KS 140101.13.09 Develop and use mathematical models to represent and justify mathematical relationships found in a variety of situations. KS 140101.04 Apply scientific methods in qualitative and quantitative analysis, data gathering, direct and indirect observation, predictions, and problem identification. KS 140101.18 Apply leadership, teamwork and effective communication to achieve a common goal. Apply appropriate technology to support collaboration in the design process. Develop and utilize a decision matrix based on accepted outcome criteria and constraints. Justify and validate a selected solution path. Document design process using technical drawings and design journal. Incorporate visual elements and principles of design in the engineered product. Justify and present problem solution. |